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Abstract 
 

     Rabin public-key encryption scheme is extended to 
the domain of polynomials over finite fields. The 
arithmetics needed for this extension are developed. 
The computational details and the modified algorithms 
are described. Numerical examples illustrating the 
modified algorithms are provided and the advantages of 
the modified scheme are pointed out. 
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1 Introduction 
  
     Rabin public-key encryption scheme is one of the 
widely used public-key cryptosystems. It is the first 
public-key cryptosystem proven to be secure. Just like 
the other well-known cryptosystems, RSA and ElGamal 
cryptosystems, Rabin algorithm is described in the 
settings of the ring Zn, the ring of integers modulo a 
composite integer n. Many aspects of the arithmetics in 
the domain of integers Z can be carried over to other 
domains such as F[x], the domain of polynomials over a 
finite field, and to the domain of Gaussian integers Z[i] 
= {a+bi | a, b ∈  Z, i = 1− }, see [5] for an 
introduction to the algebraic properties of F[x] and Z[i].  
However, the computational details of the arithmetics in 
these domains are different from those of Z, see [8] for 
an introduction on arithmetics in Z. Recently, various 
extensions of the well-known cryptosystems have been 
introduced. El-Kassar et al. [3] and El-Kassar and 
Haraty [4] modified the ElGamal public-key encryption 
schemes from the domain of natural integers to the two 
principal ideal domains Z[i] and F[x], by extending the 
arithmetic needed for the modifications to these 
domains. Extensions of the RSA cryptosystems can be 
found in [1]. Haraty et al. [6,7] performed comparative 

studies of the modified algorithms and the classical 
ones.  Kojok [9] et al. extended the ElGamal signature 
scheme to the domain of Gaussian integers.   
 
     In this paper, we extend the computational 
procedures behind the Rabin public-key cryptosystem 
using arithmetics modulo a polynomial in F[x]. First, 
we review the classical Rabin public-key cryptosystem. 
Then, we modify the computational methods in the 
domain of quotient rings of polynomials over a finite 
field. Finally, we show how the modified computational 
methods can be used to extend the Rabin algorithm to 
the domain F[x]/<f(x)>. We also show that the extended 
algorithm requires a little additional effort than the 
classical one and accomplishes much greater security. 
  
 
2 The Classical Rabin Cryptosystem 
  
     The classical Rabin cryptosystem can be described 
as follows: Entity A generates the public-key by first 
generating two large random prime integers, p and q, 
roughly of the same size, and computes n = pq. The 
public key is n and the private key is the pair (p, q). 
Suppose that entity B wants to send a message m ∈  Zn 
to entity A. To encrypt a message m chosen from Zn, 
entity B first obtains A's public-key n. Then B computes 
c = m2 (mod n). The ciphertext is c. To decrypt the 
message c sent by B, entity A uses his own private-key 
(p,q) and an appropriate method to recover the original 
message m by finding the square roots m1, m2, m3,  and 
m4, of c modulo n, see [10] pp. 99,102. The message is 
one of these square roots. 
  
Example 1. Entity A generates the public-key by first 
generating two random primes p = 277 and q = 331, 
each roughly the same size, then computes n = pq = 
91687. The public-key is n = 91687 and A's private-key 
is the pair (p = 277, q = 331). Now suppose that entity 



B wants to send the message m = 40569, chosen from 
Z91687 = {0, 1, 2,... , 91686}, to entity A. To encrypt the 
m, entity B first obtains A's public-key n. Then, entity B 
computes c ≡ m2 (mod n) ≡ 405692 (mod 91687 ) = 
62111. Hence, the ciphertext is c = 62111. Finally, to 
decrypt the ciphertext c sent by entity B, entity A uses 
his private-key and any algorithm to find the four 
square roots of c modulo n, m1 = 69654, m2 = 22033, m3 
= 40569,  and m4 = 51118.  Entity A somehow decides 
that the original message was m = 40569. 
  
 
3 Rings of Polynomials over Finite Fields 
  
     Let f(x) and g(x) be two polynomials in F[x], the ring 
of polynomials of a finite field F. Let gcd(f(x), g(x)) be 
the greatest common divisor of f(x) and g(x) whose 
leading coefficient is 1 (monic polynomial). The 
polynomial gcd (f(x), g(x)) can be uniquely written in 
the form  

gcd (f(x), g(x)) = a(x) f(x) + b(x) g(x), 
for some a(x), b(x) ∈  F[x]. The extended Euclidean 
algorithm is the process of finding gcd(f(x), g(x) and 
writing it in the form a(x) f(x) + b(x) g(x). 
  
     Given a polynomial f(x) ∈  F[x] of degree n, deg f(x) 
= n. Let F[x]/<f(x)> denote the factor ring or quotient 
ring of F[x] modulo the ideal <f(x)> generated by f(x). 
The elements of F[x]/<f(x)> are the equivalence classes 
of polynomials in F[x] of degree less n. That is, 
 
F[x]/<f(x)> = {[a0+ a1x +...+ an−1xn−1] | a0,a1,...,an−1∈ F}. 
 
An element [h(x)] of F[x]/<f(x)> is invertible iff 
gcd(f(x), g(x)) = 1. The polynomial congruence relation 
a(x) ≡ b(x) (mod f(x)) is an equivalence relation and all 
properties of congruencies of integers hold for 
polynomials. The set of all congruence classes modulo 
f(x) is F[x]/<f(x)>, so that a(x) ≡ b(x) (mod f(x)) is 
equivalent to [a(x)] = [b(x)] in F[x]/<f(x)>. A complete 
residue system modulo f(x) denoted by A(f(x)) is a set of 
distinct polynomials in F[x] of degree less than n. Then 
A(f(x)) can be written as  
 
A(f(x)) = {a0 + a1 x + ... + an−1 xn−1 | a0, a1, ..., an−1 ∈  F}. 

 
The reduced residue system modulo f(x) is 
  

R(f(x)) = {g(x) ∈  A(f(x)) | gcd (f(x), g(x)) = 1}. 
 
     Let a(x) ∈  F[x]. The multiplicative inverse of a(x) 
modulo f(x) is a polynomial b(x) ∈   F[x] such that 
a(x).b(x) ≡ 1(mod f(x)). Note that the multiplicative 
inverse of [a(x)] in F[x]/<f(x)> is [b(x)] satisfying 
[a(x)][b(x)] = 1 in F[x]/<f(x)>. The inverse exists and is 
unique modulo f(x) provided that gcd (a(x), f(x)) = 1. 

  
     The Chinese remainder theorem can be extended to 
F[x] as follows. Let m1(x), m2(x), ..., mi(x) be pairwise 
relatively prime polynomials over a field F and let 
a1(x), a2(x), ..., ai(x) ∈  F[x]. Then the system of 
congruencies  

f(x) ≡ aj(x) (mod mj(x)), 1≤ j ≤ i, 
 

has a common solution which is unique modulo the 
product m1(x)m2(x)...mi(x). 
  
     Let F be a finite field of order pn, where p is an odd 
prime. Let f(x) and g(x) be two relatively prime 
polynomials in F[x]. We say that g(x) is a quadratic 
residue (q.r.) of f(x) if the congruence ζ(x)2 ≡ g(x) (mod 
f(x)) has a solution. Otherwise g(x) is a quadratic 
nonresidue (q.n.r) of f(x). Note if ζ0(x) is a quadratic 
residue modulo f(x), then f(x)−ζ0(x) is also a quadratic 
residue. Also note that the congruence ζ(x)2 ≡ g(x) (mod 
f(x))  has either no solution or exactly two incongruent 
solutions whenever f(x) is an irreducible polynomial 
f(x) in F[x]. 
  
     The Euler phi function of f(x), denoted by φ(f(x)), is 
defined to be the number of elements in R(f(x)). If 
gcd(f(x), g(x)) = 1, then φ(f(x).g(x)) = φ(f(x)).φ(g(x)). If 
h(x) is an irreducible of degree m, then φ(h(x)) = 
(pn)m−1 and φ(h(x)α) = (pnm) α−1 [pnm−1],  see[2]. The 
number of quadratic residues of h(x) can be shown to be 
φ(h(x))/2, see [1]. In particular, if F = Zp, then h(x) has 
exactly (pn−1)/2 quadratic residues modulo h(x). The 
Legendre Symbol for polynomials in F[x] is defined by  
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     In the following we state a series of results needed 
for the extension of Rabin cryptosystem. The proofs of 
these results can be found in [1]. 
  
Theorem 1. (Wilson's Theorem in F[x])                        
Let h(x) be an irreducible polynomial in F[x].  Then, 
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     The above theorem can be used to prove the 
following extension of Euler's criterion to F[x].  
  
Theorem 2.  (Euler's criterion in F[x])  
Let h(x) be an irreducible polynomial in F[x]. Then, 
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     The following theorem shows that the congruence 
ζ(x)2 ≡ g(x) (mod η(x)), where η(x) is a product two 
distinct irreducible polynomials, has four incongruent 
solutions modulo η(x). The theorem can be used along 
with Euler's criterion in F[x] to modify an algorithm, 
[6] p. 102, for finding the square roots modulo η(x). 
 
Theorem 3.  Suppose that η(x) is a product of two 
distinct irreducible polynomials h(x) and γ(x) in F[x]. If 
the congruence ζ(x)2 ≡ g(x) (mod η(x)) has a solution 
ζ0(x), then there are exactly four incongruent solutions 
modulo η(x). 
  
Using the above results the algorithms for finding 
square roots are extended to the domain of F[x] as 
follows.  
  
Algorithm 1. (Finding roots modulo an irreducible 
polynomial) 
INPUT: an irreducible polynomial h(x) in F[x] and a(x) 
∈  R(h(x)). 
OUTPUT: the two square roots of a(x) modulo h(x), 
provided a(x) is a quadratic residue modulo h(x). 

1. Use Euler’s criterion (Theorem 1) to compute 
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square root modulo h(x)) and terminate. 
3. Select b(x) ∈  R(h(x)) at random until one is found 

with 
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4. By repeated division by 2, write φ(h(x)) = 2s t, 
where t is odd. 

5. Compute a(x)−1 (mod h(x)) using the extended 
Euclidean algorithm for polynomials. 

6. Set c(x) ← (b(x))t (mod h(x)) and r(x) ← ( ) 2
1

)(
+t

xa  
(mod h(x)). 

7. For i from 1 to s−1 do the following: 

6.1 Compute d(x) = ( ) 1212 )()(
−−

−
is

xaxr  (mod 
h(x)). 

6.2 If d(x) ≡ −1 (mod h(x)), then set r(x) ← 
r(x).c(x) (mod h(x)). 

6.3 Set c(x) ← (c(x))2(mod h(x)). 
8. Return (r(x), −r(x)). 

  
Algorithm 2. (Finding roots modulo a product of two 
distinct irreducible polynomials) 
INPUT: A polynomial η(x) = h(x).γ(x), h(x) and γ(x) 
are distinct irreducible polynomials, and a(x) is a 
quadratic residue modulo η(x). 

OUTPUT: the four square roots of a(x) modulo η(x). 
1. Use Algorithm 1 to find the two square roots r(x) 

and −r(x) of a(x) modulo h(x). 
2. Use Algorithm 1 to find the two square roots s(x) 

and −s(x) of a(x) modulo γ(x).  
3. Use the extended Euclidean algorithm in F[x] to 

find c(x) and d(x) such that c(x)h(x) + d(x) γ(x) = 1. 
4. Set m1(x) ← (r(x)d(x)γ(x) + s(x)c(x)h(x)) (mod 

η(x)) and  m2(x) ← (r(x)d(x) γ(x) − s(x)c(x)h(x)) 
(mod η(x)).  

5. Return (±m1(x) (mod η(x)), ±m2(x) (mod η(x)). 
  
4 Rabin Cryptosystem in F[x] 
  
     This section is devoted to the generalization of 
Rabin public-key cryptosystems to polynomial rings 
over the finite field F[x]. Arithmetic over polynomials 
discussed above can be applied to extend Rabin 
cryptosystem. For simplicity, we let F = Zp and the 
general case can be easily obtained in a similar manner. 
First, choose an odd prime integer p, and two 
irreducible polynomials h(x) and g(x) in Zp[x] of 
degrees r and s respectively. Then, find the polynomial 
η(x) = h(x)g(x) of degree n = r + s in Zp[x]. Hence, the 
public-key is (p, η(x)) and the private-key is (h(x), 
g(x)). Note that the number of elements in A(η(x)) is pn 
and the number of elements in the reduced residue 
system R(η(x)) is φ(η(x)) = (ps−1)(pr−1). 
  
     To encrypt the message m(x) ∈  A(η(x)), we find the 
polynomial c(x) ∈  R(η(x)) with c(x) ≡ ( m(x))2 (mod 
η(x)) in Zp[x]. The ciphertext is c(x). To decrypt the 
ciphertext c(x), we apply algorithm 2 to find the four 
polynomial square roots of c(x) modulo η(x) in Zp[x]. 
Finally, we select some how the original message m(x) 
among them, see [10]. 
  
     Next, we describe the algorithms of the extended 
Rabin public-key cryptosystem to polynomials. First, to 
generate the public and private-keys, entity A should 
use the following algorithm: 
  
Algorithm 3.  (Key generation for Rabin public-key 
encryption over polynomials) 

1. Generate a large random odd prime integer p. 
2. Generate two distinct irreducible polynomials h(x) 

and g(x) in Zp[x]. 
3. Reduce  η(x) = h(x)g(x) in Zp[x]. 
4. A’s public-key is (p, η(x)). 
5. A’s private-key is (h(x), g(x)). 

  
     To encrypt the selected message m(x) chosen from 
A(η(x)), entity B should use the following algorithm: 
  



Algorithm 4. (Rabin public-key encryption over 
polynomials) 

1. Obtain A’s authentic public-key (p, η(x)). 
2. Represent the message as a polynomial m(x) ∈  

A(η(x)). 
3. Reduce c(x) ≡ m(x)2 ( mod η(x)) in Zp[x]. 
4. Send the ciphertext c(x) to entity A. 

 
     Finally, to decrypt the ciphertext c(x) sent by entity 
B, entity A should use the following algorithm: 
  
Algorithm 5.  (Rabin public-key decryption over 
polynomials) 

1. Use Algorithm 2 to find the four square roots 
m1(x), m2(x), m3(x), and m4(x), of c(x) modulo η(x) 
in Zp[x]. 

2. The message sent was either m1(x), m2(x), m3(x), or 
m4(x). Entity A somehow decides which of these 
the original message m(x) is. 

  
Example 2.  (Rabin encryption over polynomials with 
artificially small parameters) To generate the public-
key, entity A generates a random odd prime integer p = 
5 and two irreducible polynomials h(x) = x2 + 3x + 1 
and g(x) = x3 + 2 x2 + 4 x + 2 in Z5[x]. Then, entity A 
reduces the polynomial η(x) = h(x)g(x) ≡ x5 + x3 + x2 + 2 
in Z5[x]. Hence, A’s public-key is  

(p = 5, η(x) = x5 + x3 + x2 + 2), 
and A’s private-key is the pair  

(h(x) =  x2 + 3x + 1, g(x) = x3 + 2 x2 + 4 x + 2). 
     Suppose that m(x) = x3 + x + 2 be a polynomial in the 
complete residue system modulo η(x) = x5 + x3 + x2 + 2 
Z5[x]/< x5 + x3 + x2 + 2>. To encrypt the message m(x), 
entity B reduces in Z5[x] the polynomial  
c(x) ≡ m2(x) ≡ x4 + 3 x3 + x2 + 2 x + 4 (mod x5 + x3 + x2 + 

2). 
Hence, the ciphertext is c(x) = x4 + 3 x3 + x2 + 2 x + 4. 
  
     To decrypt the ciphertext message sent by entity B, 
entity A should use algorithm 2 to find the four 
polynomial square roots m1(x), m2(x), m3(x), and m4(x) 
in Z5[x]. Applying algorithm 2, we have that the 
original message is one of the following polynomials:  

m1(x) = 2 + x + x3, 
m2(x) = 4 + 4 x + 2x2 + 4x4, 
m3(x) = 1 + x + 3x2 + x4,  
m4(x) = 3 + 4 x + 4x3.  

     Finally, entity A somehow decides that m(x) = 
x3+x+2 of those square roots is the original message. 
  
5 Conclusion 
  
     Using arithmetics in rings of polynomials over finite 
fields, Zp[x]/<h(x)>, where p is an odd prime and h(x) is 
an irreducible polynomial in Zp[x] of degree n, Rabin 
public-key encryption scheme was modified from the 

domain of natural integers to Zp[x]/<h(x)>. The 
computational procedures in the new setting were 
described and the advantages of the new scheme were 
pointed out. The following are some of these 
advantages: First, generating the odd prime p in both 
the classical and the modified methods requires the 
same amount of efforts. The complete residue system 
Zn has pq elements, while the complete residue system 
Zp[x]/<h(x)> has pn elements. Therefore, the modified 
method provides an extension to the range of chosen 
messages, which makes trials more complicated. The 
computations involved in the modified method do not 
require computational procedures that are much 
different from those used in the classical method. Rabin 
encryption involves a single modular squaring and that 
makes it extremely fast operation. Rabin decryption is 
not as fast as encryption, but comparable in speed to 
other cryptosystems such as RSA decryption. 
 
     A drawback of Rabin public-key scheme is the task 
of selecting the correct message from among the four 
possibilities. This can be overcome by adding some 
prespecified redundancy to the original message before 
encryption. For example, the last few digits of the 
message may be replicated. Then, the one square root 
of the four which possesses this redundancy will be 
selected.  Another drawback of Rabin public-key 
scheme in F[x] is the determination of the two 
irreducible polynomials. However, the extra security 
provided by the modified method justifies the 
additional effort.   
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